温馨提示: 定期 清理浏览器缓存,可以获得最佳浏览体验。
New!
lianxh
命令发布了:
随时搜索连享会推文、Stata 资源,安装命令如下:
. ssc install lianxh
使用详情参见帮助文件 (有惊喜):
. help lianxh
⛳ Stata 系列推文:
编者:展一帆 (复旦大学)
邮箱:simonzhanyf@163.com
编者按:本文主要摘译自下文,特此致谢!
Source: 谢申祥, 范鹏飞, 宛圆渊. 传统PSM-DID模型的改进与应用[J]. 统计研究, 2021, 38(02):146-160. -Link-
目录
近年来,经济学研究出现了 “自然实验化” 的趋势,相关计量经济学模型也得到了快速发展。其中,倾向得分匹配-双重差分模型 (以下简称 PSM-DID) 作为有力的政策分析工具更是被广泛使用。
PSM-DID 模型是由倾向得分匹配模型 (Propensity Score Matching,以下简称 PSM) 和双重差分模型 (Differences-in-Differences,以下简称 DID) 结合而成。其中,PSM 负责为受处理的个体筛选对照个体,DID 负责识别政策冲击所产生的影响。
然而,二者在适用范围方面并不相同,即 PSM 模型适用于截面数据,而 DID 模型适用于面板数据。传统基于面板数据转化为截面数据再匹配的方案和基于面板数据逐期匹配的方案,都容易产生 “自匹配” 现象或匹配对象在政策前后不一致的问题。
为此,本文将阐述 PSM-DID 模型在应用中出现的问题,并探究这些问题出现的原因。在此基础上,本文也将提出一种可行的改进方案。
PSM 适用于截面数据,而 DID 适用于面板数据。针对二者适用范围不同的问题,学者们一般有两种解决方案:
将面板数据直接转化为截面数据处理,会产生不同期样本匹配的问题,这使得最终的识别结果中掺杂了大量时间趋势信息。
以图 2 为例,将面板数据划分为 (a)、(b)、(c)、(d) 四种结构类型。其中,(a) 和 (b) 属于平衡面板数据,并且 (b) 更为特殊,其处理组和对照组都是平衡面板数据,本文称之为 “双平衡” 面板数据。(c) 和 (d) 是 (a) 和 (b) 存在部分数据缺失的情况,均属于非平衡面板数据。
在 (a) 类数据结构下,个体
识别结果 (
对于(b)类 “双平衡” 数据结构而言,将面板数据转化为截面数据进行匹配的方案虽然不会造成 “自匹配” 问题,但其依然会受到 “时间错配” 问题的困扰。例如在 (b) 中
而 (c) 和 (d) 分别是 (a) 和 (b) 类数据结构中存在部分数据缺失的情况,在利用它们进行的回归当中,还会存在部分因数据缺失而造成的偏误问题。
如果选择逐期匹配的方案,即在每期截面上都进行一次匹配,虽较好地解决了样本不同期匹配的问题,但可能还会受到其他问题的困扰。
首先是特殊类变量的错配。特殊类变量 (
其次,当数据类型为非平衡面板数据时,逐期匹配会因数据缺失而产生一定的缺失偏误。例如如图 3 中 (a) 所示,假如
此外,对照组的不稳定性 (处理组个体的匹配对象在冲击前后发生了变化) 也会产生部分匹配偏误。例如图 3 中 (b) 所示,个体
接下来,本文针对上文提到的几个问题进行改进。如果 PSM 模型筛选所得的对照组兼具可比性和稳定性,则 PSM-DID 模型的识别结果将更加稳健可靠。
以 “双平衡” 面板数据为例,首先将匹配变量划分为普通的匹配变量
为防止对照组在冲击前后发生变动,一旦匹配成功,
式中
针对非平衡面板,处理组中每个个体存在时间
可以看出,改进方法中的关键点如下:
据此,我们便可得到具有可比性和稳定性的对照组 (种类相同并且状况相似,且冲击前后为相同个体),从而保证了 DID 模型分析的有效性。
Note:产生如下推文列表的 Stata 命令为:
lianxh 倾向得分匹配 PSM DID, m
安装最新版lianxh
命令:
ssc install lianxh, replace
免费公开课
最新课程-直播课
专题 | 嘉宾 | 直播/回看视频 |
---|---|---|
⭐ 最新专题 | 文本分析、机器学习、效率专题、生存分析等 | |
研究设计 | 连玉君 | 我的特斯拉-实证研究设计,-幻灯片- |
面板模型 | 连玉君 | 动态面板模型,-幻灯片- |
面板模型 | 连玉君 | 直击面板数据模型 [免费公开课,2小时] |
⛳ 课程主页
⛳ 课程主页
关于我们
课程, 直播, 视频, 客服, 模型设定, 研究设计, stata, plus, 绘图, 编程, 面板, 论文重现, 可视化, RDD, DID, PSM, 合成控制法
等
连享会小程序:扫一扫,看推文,看视频……
扫码加入连享会微信群,提问交流更方便
✏ 连享会学习群-常见问题解答汇总:
✨ https://gitee.com/arlionn/WD
New!
lianxh
命令发布了:
随时搜索连享会推文、Stata 资源,安装命令如下:
. ssc install lianxh
使用详情参见帮助文件 (有惊喜):
. help lianxh